new LDA(X, parameters)
Linear Discriminant Analysis.
Name | Type | Description | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | Matrix | The high-dimensional data. | |||||||||||||||||||||||||
parameters | object | Object containing parameterization of the DR method. Properties
|
- Source
Extends
Members
projection
- Overrides
- Source
Methods
check_init() → {DR}
If the respective DR method has an init
function, call it before transform
.
- Overrides
- Source
- Type:
- DR
(generator) generator() → {Matrix|Array.<Array.<number>>}
Computes the projection.
- Overrides
- Source
the intermediate steps of the projection.
- Type:
- Matrix |
Array.<Array.<number>>
parameter(nameopt, valueopt) → {DR|any|object}
Set and get parameters
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
name | string | <optional> | null | Name of the parameter. If not given then returns all parameters as an Object. |
value | any | <optional> | null | Value of the parameter to set. If |
- Overrides
- Source
On setting a parameter, this function returns the DR object. If name
is set and value == null
then return actual parameter value. If name
is not given, then returns all parameters as an Object.
- Type:
- DR |
any | object
'''
const DR = new druid.TSNE(X, {d: 3}); // creates a new DR object, with parameter for <code>d</code> = 3.
DR.parameter("d"); // returns 3,
DR.parameter("d", 2); // sets parameter <code>d</code> to 2 and returns <code>DR</code>.
'''
transform()
Transforms the inputdata X
to dimenionality d
.
- Overrides
- Source
(async) transform_async(…args) → {Promise.<(Matrix|Array.<Array.<number>>)>}
Computes the projection.
Name | Type | Attributes | Description |
---|---|---|---|
args | unknown | <repeatable> | Arguments the transform method of the respective DR method takes. |
- Overrides
- Source
the dimensionality reduced dataset.
- Type:
- Promise.<(Matrix|Array.<Array.<number>>)>